p53 Gene Targeting by Homologous Recombination in Fish ES Cells
نویسندگان
چکیده
BACKGROUND Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes). METHODOLOGY AND PRINCIPAL FINDINGS Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1∼MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by ∼12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo. CONCLUSIONS Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology.
منابع مشابه
Designing E1 Deleted Adenoviral Vector by Homologous Recombination
Adenoviruses are used extensively to deliver genes into mammalian cells, particularly where there is a requirement for high-level expression of transgene products in cultured cells, or for use as recombinant viral vaccines or in gene therapy. In spite of their usefulness, the construction of adenoviral vectors (AdV) is a cumbersome and lengthy process that is not readily amenable to the generat...
متن کاملRMCE-ASAP: a gene targeting method for ES and somatic cells to accelerate phenotype analyses
In recent years, tremendous insight has been gained on p53 regulation by targeting mutations at the p53 locus using homologous recombination in ES cells to generate mutant mice. Although informative, this approach is inefficient, slow and expensive. To facilitate targeting at the p53 locus, we developed an improved Recombinase-Mediated Cassette Exchange (RMCE) method. Our approach enables effic...
متن کاملNanos3 Gene Targeting in Medaka ES Cells
Gene targeting (GT) by homologous recombination offers the best precision for genome editing in mice. nanos3 is a highly conserved gene and encodes a zinc-finger RNA binding protein essential for germ stem cell maintenance in Drosophila, zebrafish and mouse. Here we report nanos3 GT in embryonic stem (ES) cells of the fish medaka as a lower vertebrate model organism. A vector was designed for G...
متن کاملDetermination of transgenic loci by expression FISH.
DNA targeting by homologous recombination in mouse embryonic stem (ES) cells has become a widely used method for manipulating the mouse genome and for studying the role of specific genes in mammalian development. For certain studies, it is necessary to target two or more DNA sequences residing on a particular chromosome. In these situations, it would be important to distinguish whether two sequ...
متن کاملEfficient Gene Targeting by Homologous Recombination in Rat Embryonic Stem Cells
The rat is the preferred experimental animal in many biological studies. With the recent derivation of authentic rat embryonic stem (ES) cells it is now feasible to apply state-of-the art genetic engineering in this species using homologous recombination. To establish whether rat ES cells are amenable to in vivo recombination, we tested targeted disruption of the hypoxanthine phosphoribosyltran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013